Cultivating your English Vocabulary through **STEM** Activities

Kevin J. Spence

Webinar Goals

- Define STEM English and examine how it relates to other key English language teaching concepts
- Demonstrate how to use Inquiry-based Instruction to teach STEM content – especially vocabulary
- Explore how to apply vocabulary learning strategies in the classroom

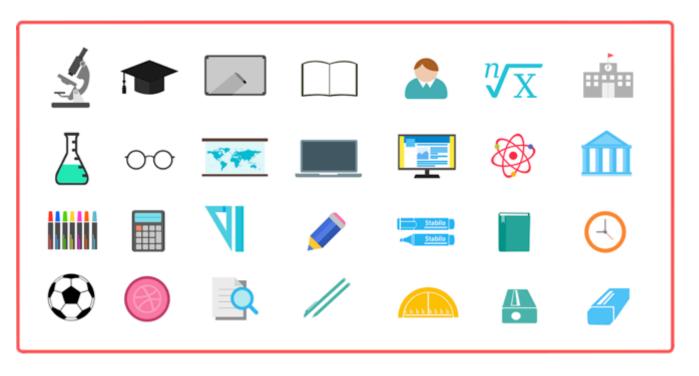
What is STEM English?

Science Technology Engineering Math

STEM English is also referred to as

STEAM (Science, Technology, Engineering, the ARTS, and Math)

STEMM (Science, Technology, Engineering, Math, and **MEDICINE**)



What is General English?

What is English for Specific Purposes?

English for Specific Purposes is also called ESP

Let's take a poll!

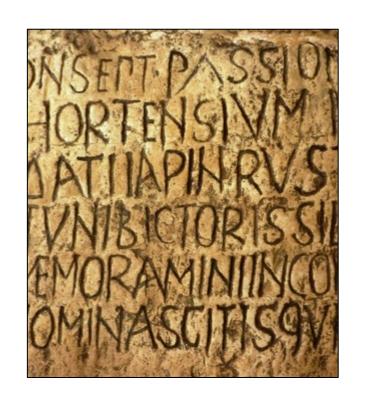
STEM and ESP - Similarities

• STEM

Science, Technology, Engineering, and Math

ESP

English for Specific Purposes



Let's take a poll!

STEM English is different from General English

Greek words

Latin words

Other examples of Greek or Latin words in English

Bio – life

Autobiography – a book about a person's <u>life</u> written by that person

Biology – the study of <u>life</u>

Photobiology – the study of light (photo) and <u>life</u>

Rept – to crawl

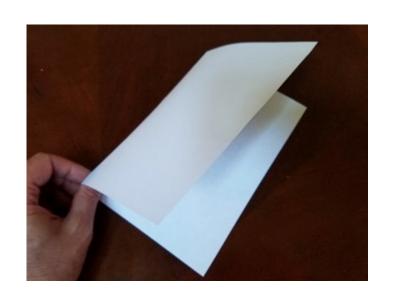
Reptile – coldblooded animal with scales that often <u>crawl</u>s

Crept - to crawl
(past tense)

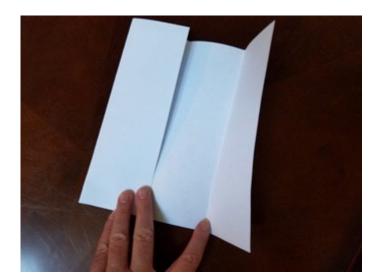
Sur**rept**itiously – to do something in a sneaky way, like a <u>crawling</u> animal

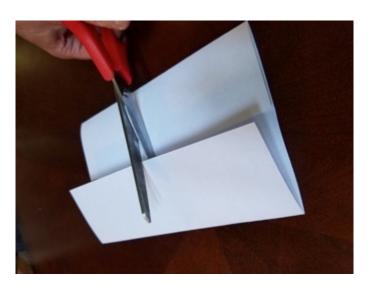
Geo – of the earth

Geology – the study of the history of the <u>earth</u>

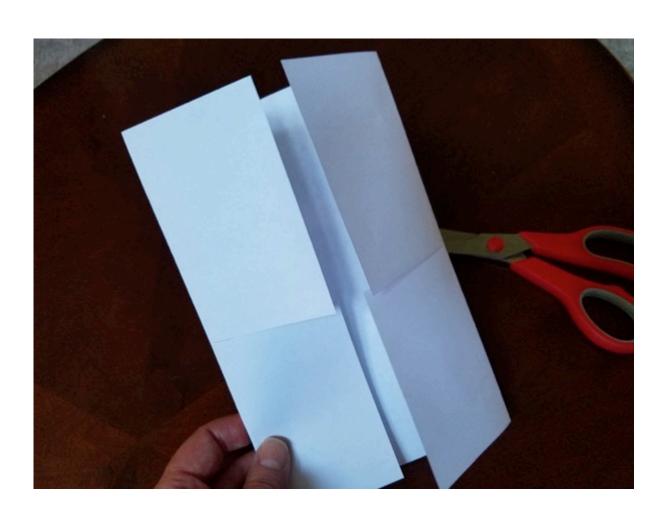

Geography – the study of physical features of the <u>earth</u>

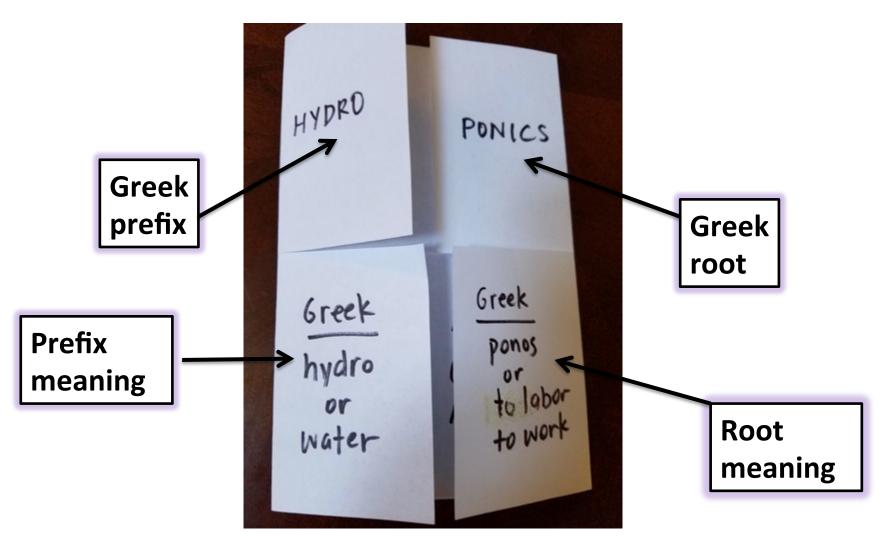

Geopolitical – international relations (of the <u>earth</u>)

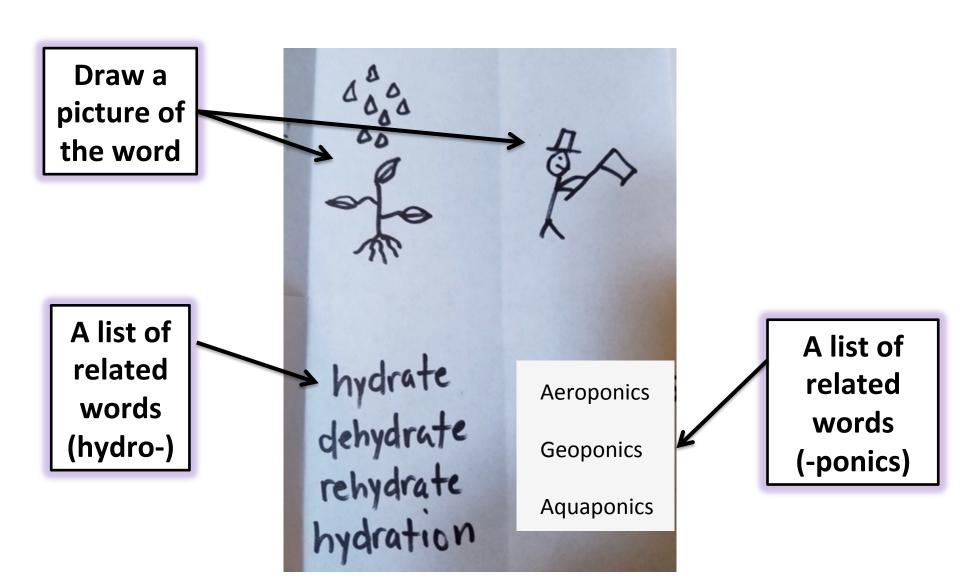

STEM Lesson - Hydroponics and Vocabulary



Vocabulary Activity How to make a foldable vocabulary book



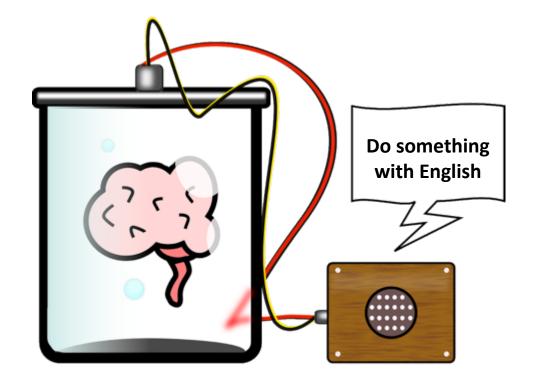


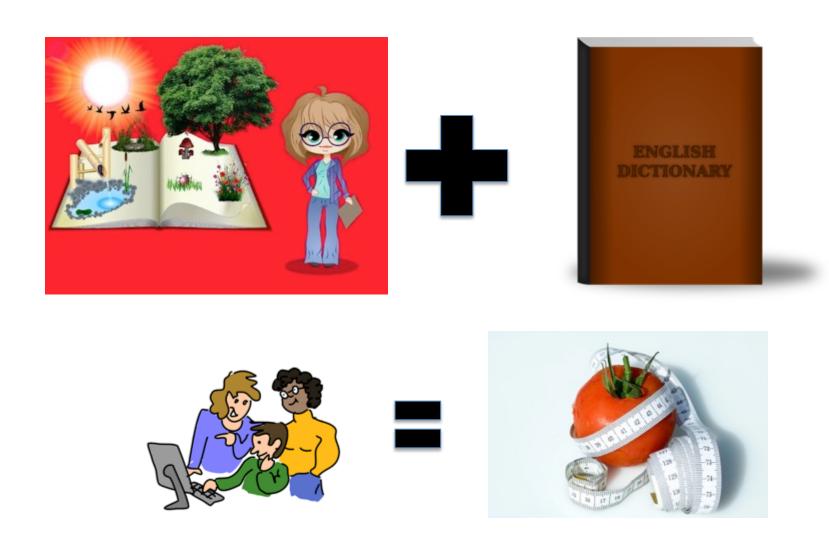

Vocabulary Activity How to make a foldable vocabulary book

Help students write in their new vocabulary foldable!

Help students write in their new foldable!

Your new foldable vocabulary page is complete!


What is Content-based Instruction?


- Meaningful
- Relevant content
- Contextual
- Authentic materials

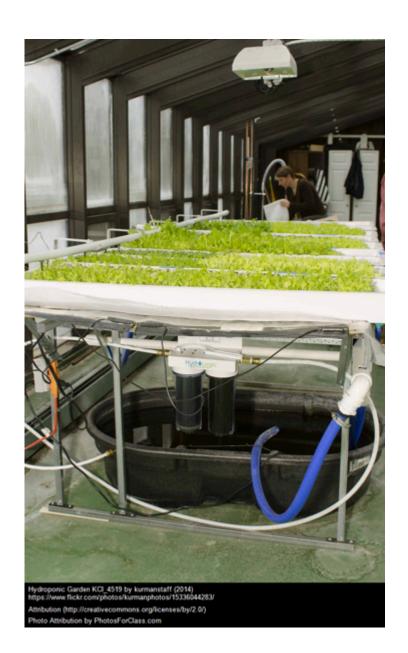
More about Content-based Instruction

More about Content-based Instruction

5 Steps for Creating Inquiry-based Instruction (The 5 E's)

- 1. ENGAGE
- 2. EXPLORE
- 3. EXPLAIN
- 4. ELABORATE
- **5. EVALUATE**

1. ENGAGE



- Curious students
- Background knowledge
- Personal connections
- Visual aids

1. ENGAGE - ACTIVITY

1. ENGAGE - ACTIVITY

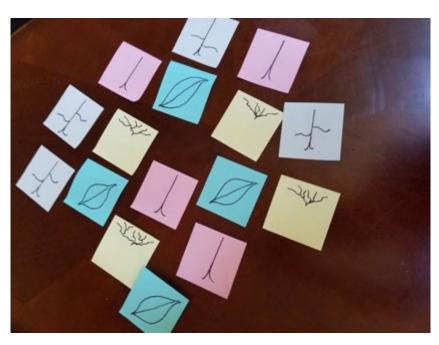
K-KNOW	W-WANT TO KNOW	L-LEARNED
		Kinds of agricultural techniques in my country
Local vegetables		
	What are useful words to describe hydroponics?	

2. EXPLORE

Cooperative Learning

- Investigate
- Observe

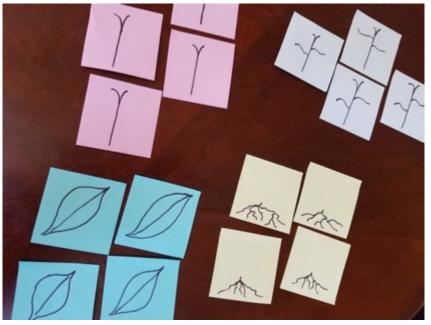
Fun ways to group students



1. Pass out a different colored piece of paper to each student

2. Direct students to different corners of the room

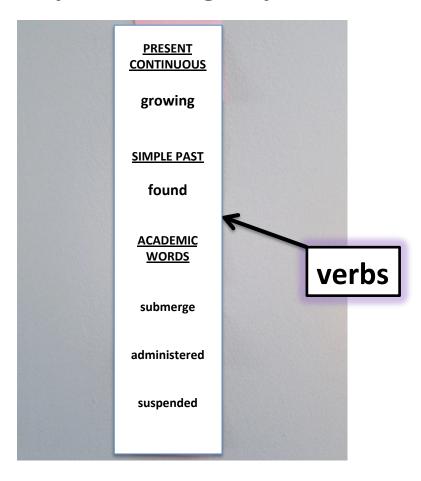
Fun ways to group students

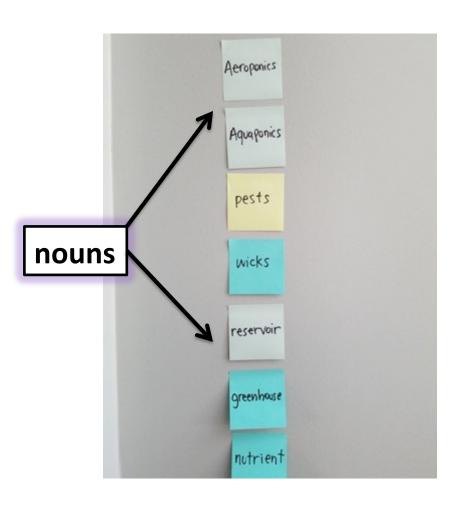


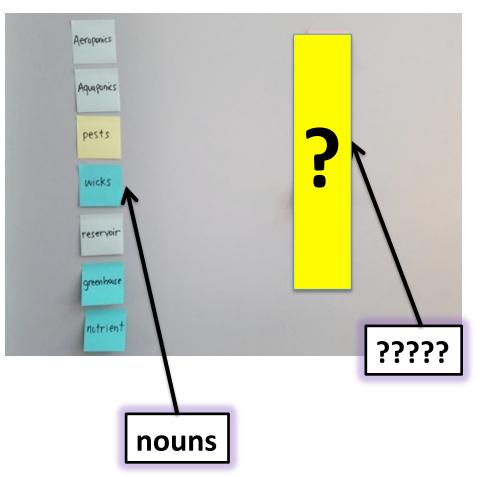
Pink - stalks

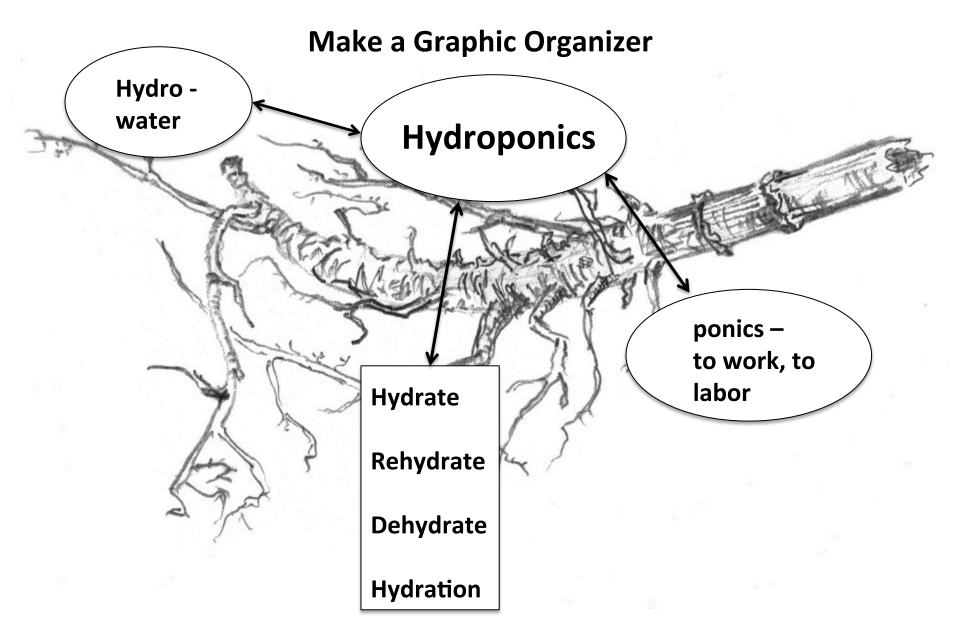
Green – stems

Blue - leaves


Yellow – roots


Make a word wall




Help students group words

Help students group words – make a word wall

Hydroponics

From Open Source Ecology

Main > Food and Agriculture > Controlled-environment growing

Hydroponics is the practice of growing plants in nutrient-enriched water rather than soil.

Hydroponics is incredibly productive and requires little space. For example, Factor e Farm's experiments found that they could grow \$1 of lettuce per square foot per week. And the Institute of Simplified Hydroponics (http://carbon.org/) has found that they can grow 2kg of vegetables a day on $20m^2$ of space [1]

An example of vertically stacked hydroponic installation. A system like this would allow a person to be self-sustaining for vegetables in just a few square meters. This makes it particularly useful for urban settings.

(http://webcache.googleusercontent.com/search? q=cache:ezRcpPE6EGwJ:www.carbon.org/senegal/india1.doc&cd=4&hl=en). Indoor growing in a greenhouse greatly reduces losses to pests.

There are 6 main techniques used in hydroponics. The Drip hydroponics system (http://uponics.com/hydroponicssystem/) continuously drips nutrient solution onto the plants roots. The Ebb and Flow (Flood and Drain) system floods the grow bed and hydroponics growing medium (http://uponics.com/hydroponics-system/) with a nutrient solution, then this solution slow drains back to the reservoir. Roots benefit from these periods of wetness and dryness. Deep Water Culture simply submerges roots in a nutrient solution. Less common hydroponics systems include the Wick System (where a fabric material wicks nutrient solution from the reservoir up to the roots), Nutrient Film Technique (where nutrient solution runs down long channels or tubes and passes over bare roots), and Aeroponics (where nutrients are administered via misting suspended and bare-rooted plants).

See here (http://www.hydroponicsonline.com/blog/easy-to-build-hydroponic-system) for free instructions on building several different hydroponic systems. N55 have a design for a vertical hydroponic system here (http://www.n55.dk/MANUALS/HOME_HYDRO/HOME_HYDRO.html). See Wikipedia on hydroponics (http://en.wikipedia.org/wiki/Hydroponics) for more information.

Open source software for automating hydroponic systems (http://hmeter.sourceforge.net/).

- Read the text with students
- Help students select words they don't know

New vocabulary

misting submerge aeroponics reservoir eliminate

http://opensourceecology.org/wiki/Hydroponics

3. EXPLAIN

- Teacher-directed
- Introduce scientific and technical information
- Clarify students' misconceptions

3. EXPLAIN

Direct (explicit) instruction

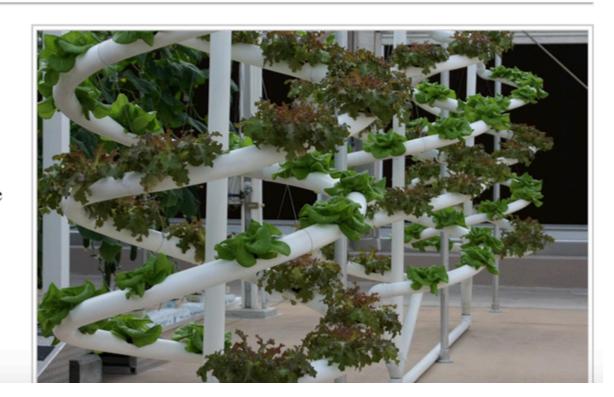
Hydroponics is the practice of growing plants in nutrient-enriched water rather than soil.

Hydroponics is incredibly productive and requires little space. For example,

3. EXPLAIN

Hydroponics

From Open Source Ecology


Main > Food and Agriculture > Controlled-environment growing

Hydroponics is the practice of growing plants in nutrient-enriched water rather than soil.

Hydroponics is incredibly productive and requires little space. For example, Factor e Farm's experiments found that they could grow \$1 of lettuce per square foot per week. And the Institute of Simplified Hydroponics (http://carbon.org/) has found that they can grow 2kg of vegetables a day on $20m^2$ of space [1]

QUICK TIP!

Use authentic materials, such as this article from Open Source Ecology

3. EXPLAIN – Review word beginnings/endings with students

Common Prefixes and Suffixes – Group Words

NOUNS

SUFFIX	MEANING	EXAMPLE
-ion	action, condition	hydration
-ic	quality, related to science	hydroponic

VERBS

SUFFIX	MEANING	EXAMPLE
-ate	to cause to be	hydrate
PREFIX	MEANING	EXAMPLE

PREFIX	MEANING	EXAMPLE
re-	again and again	rehydrate
de-	remove, separate	dehydrate

Not

dis-

un-

mis-

im-

in-

3. EXPLAIN - Teach words in context

"Indoor growing in a greenhouse greatly reduces losses to <u>pests</u>."

3. EXPLAIN - Teach words in context

DEFINITION CLUES

autotroph

Many organisms cannot produce their own food, unlike autotrophs. (CONTRAST)

Autotrophs are organisms capable of nourishing themselves. (DEFINE)

auto - self

troph - to nourish

3. EXPLAIN - Teach words in context

SYNONYM CLUES

tegmentum

The tegmentum, with many layers of tissue twisting under the cranium, provided us with an excellent medical example for class.

teg - cover

ment - refers to mind or brain

3. EXPLAIN – Using Critical Thinking

6 JUN 2017 ■ Ohio NewsWatch

Ohio farmer leads national aquaculture organization

THE U.S. is the second-largest consumer of seafood, yet it imports 85% of the seafood it consumes. This represents opportunity for U.S. farmers — especially soybean farmers, as soy is an excellent feedstock for many species of fish. However, growing an industry comes with challenges.

Bill Bayliss, a farmer from West Mansfield, has stepped up to tackle these challenges as chairman of the national Soy Aquaculture Alliance.

"The alliance acts as a hub for the soybased aquaculture research cultivating high-value soy solutions for the global aquaculture industry, growing a U.S. aquaculture industry and making U.S. soybeans one of the most utilized ingredients in fish and shrimp farming," says Bayliss, who also serves on the Ohio Soybean Council board of trustees.

"It's a calling," he says. "Providing

people with nourishing food, supporting communities, and stewardship of natural resources is what farmers do, and I'm happy to be able to be a part of this new budding sector of the industry in the U.S."

The SAA's board of directors is comprised of members of the soy, aquaculture and seafood industries. Since its formation in 2011, the board has focused on two primary goals: collaboration among members of the core industries it serves and facilitating essential aquaculture research.

"The opportunity for growth is there, both in the production of the fish and seafood products, as well as the soy and other feedstocks," says Bayliss. "We are doing some great work to help that growth along so that both farmers and consumers can reap the benefits."

To learn more about aquaculture, visit the SAA at soyaquaalliance.com.

Source: SAA

PROBLEMS

- Importing seafood
- Not enough food for fish
- Soybean shortage

SOLUTIONS

- Saving natural resources
- Aquaculture research

4. ELABORATE

4. ELABORATE - ACTIVITY

Design a tourism brochure

Create an instruction manual

4. ELABORATE - ACTIVITY

Create a recipe using local produce

Interview a local farmer

5. EVALUATE

INFORMAL EVALUATION

brochure

observation

vocabulary activities

FORMAL EVALUATION

test

report

quiz

Phototropism

The experiment included the idea of <u>phototropism</u> because as the sun emerged, the plant directed itself toward the light.

Let's take a poll!

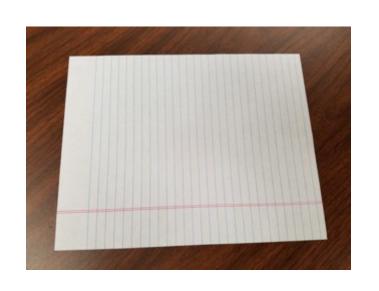
Phototropism: A new STEM-related vocabulary lesson

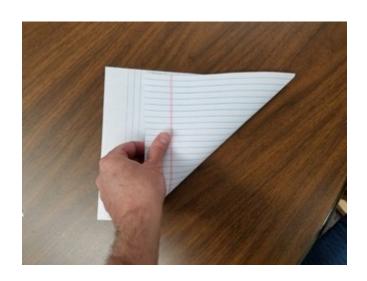
Content-based instruction

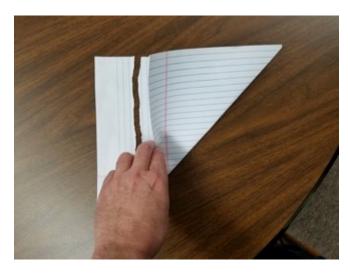
Gather critical vocabulary related to Tropism (content-specific)

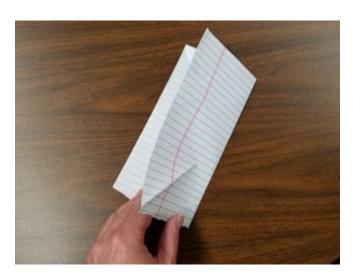
Students do something with the new vocabulary

Inquiry-based Instruction (5 Es)

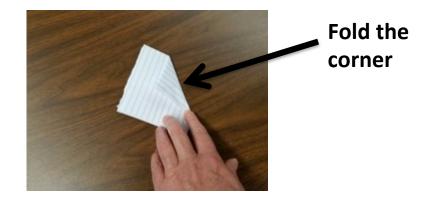

Engage, Explore, Explain, Elaborate, Evaluate

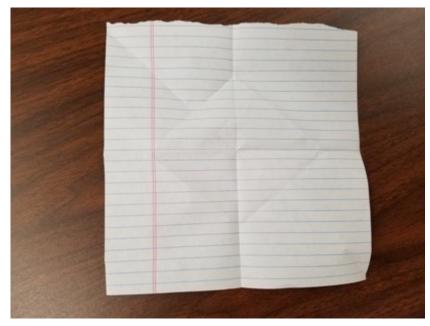

Authentic Materials



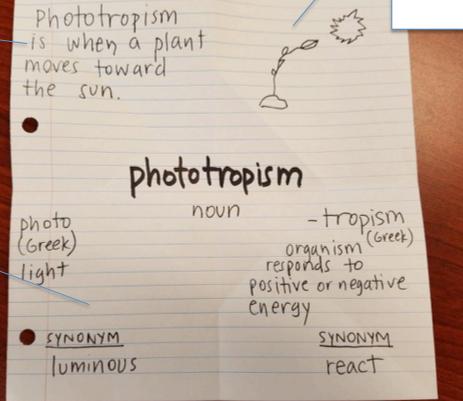

- Science textbook
- Videos
- News articles

Vocabulary Notebook – a second way





Vocabulary Notebook – a second way


Write a sentence in context

Phototropism

Provide many ways for students to encounter words (rich, deep contexts)

Define word parts

List synonyms

Design and conduct an experiment

Phototropism

Materials

- 1 small container
- 2 rubber bands
- 1 small wild plant
- 1 napkin
- Water
- Classroom shelf
- 2 pieces of plastic

Create a lab report with your new STEM-related vocabulary

LAB REPORT

- Title
- Introduction
- Hypothesis
- Materials
- Procedures
- Results
- Conclusion

Academic words

- excessive
- vegetation

General English

- too much
- plants

Title: Effects o	of excessive water on phototropism in classroom vegetation
Introduction:	Objectives, purpose, Why?
Hypothesis:	Explanation, theory
Materials:	
Procedures (Experiment):	
Results:	
Conclusion:	

If...then statements

Title: Effects of **excessive** water on phototropism in classroom vegetation Introduction: **Hypothesis: Materials:** List of items (soil, nutrients, container) **Procedures:** Describe the steps **Results: Conclusion:**

Use adverbs of time

today, later, after, frequently

Use adjectives

First, second, third, etc.

<u>Units of</u> measurement

Kilogram

Title: Effects of excessive water on phototropism in classroom vegetation
Introduction:
Hypothesis:
Materials:
Procedures:
Results: Shares the findings of the experiment
Conclusion: A summary; very short

What have you found?
What did you discover?

- According to...
- My results indicate...
- conclude
- identified

Give yourself a hand!

You've successfully helped students learn new STEM-related vocabulary through:

Content-based Instruction, Inquiry-based Instruction and vocabulary activities!

Let's take a final poll!

Cultivating your English Vocabulary through **STEM** Activities

Thank you!

Sources

- American Heritage Dictionary: https://ahdictionary.com/
- Biology Online: biologyonline.com
- Graves, M., August, D., & Mancilla-Martinez, J. (2013). Teaching vocabulary to English language learners. New York, NY: Teachers College Press.
- Loesching, L.V. (1996). Simple earth science experiments with everyday materials. New York, NY: Sterling Publishers.
- National Academy of Science. National Science Education Standards.
 (1996). http://www.nasonline.org/?referrer=https://www.google.com/)
- Open Source Ecology Hydroponics: http://opensourceecology.org/wiki/ Hydroponics